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We argue here that it is a quirk of history 
that both MRT and gene editing have  
come to the forefront of public attention at 
roughly the same time. The early start on 
MRT in the United Kingdom enabled that 
country to successfully developed quite 
different regulatory policy approaches  
to the two technologies5; in contrast, the  
fear of germline gene editing in the  
United States and Canada has frozen the 
policy conversation on MRT. We should  
not let fear drive use of a sledgehammer  
for regulation when a scalpel will better 
enable us to divide the good from the bad.

Although realistic about the barriers 
to change, we have outlined possible ways 
forward for both the United States and 
Canada that would enable progress on 
MRT, or possibly some limited germline 
gene editing without opening the floodgate. 
We argue that this path, and not outright 
prohibition, is the best way forward  
because citizens deserve to benefit  
from the advancement of science and  
its applications.

Moreover, in our globalized world, 
national prohibitions cannot fully achieve 
their goals. As the travel of patients to 
Mexico for MRT performed by US doctors 
demonstrates (as do other examples)27,28, 
patients who desperately wish to access 
certain interventions will travel abroad 
to get them. Unless countries such as the 
United States and Canada are willing to limit 
the entry of children born through these 
technologies—were it even possible, and 
we are skeptical—and extend their criminal 
jurisdiction extraterritorially to prevent the 

use of these technologies, the reality is that 
some citizens of each country will bring 
germline alterations back into the country. 
Our view is that, to best protect citizens 
from harm, limited regulatory pathways that 
can be monitored and carefully delineated 
are preferable to shadowy practices and a 
potential regulatory race to the bottom. ❐
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The Kipoi repository accelerates community 

exchange and reuse of predictive models  

for genomics
To the Editor — Advances in machine 
learning, coupled with rapidly growing 
genome sequencing and molecular 
profiling datasets, are catalyzing progress in 
genomics1. In particular, predictive machine 
learning models, which are mathematical 
functions trained to map input data to 
output values, have found widespread usage. 
Prominent examples include calling variants 
from whole-genome sequencing data2,3, 
estimating CRISPR guide activity4,5 and 
predicting molecular phenotypes, including 
transcription factor binding, chromatin 
accessibility and splicing efficiency, from 

DNA sequence1,6–11. Once trained, these 
models can be probed in silico to infer 
quantitative relationships between diverse 
genomic data modalities, enabling several 
key applications such as the interpretation 
of functional genetic variants and rational 
design of synthetic genes.

However, despite the pivotal importance 
of predictive models in genomics, it is 
surprisingly difficult to share and exchange 
models effectively. In particular, there is 
no established standard for depositing and 
sharing trained models. This lack is in stark 
contrast to bioinformatics software and 

workflows, which are commonly shared 
through general-purpose software platforms 
such as the highly successful Bioconductor 
project12. Similarly, there exist platforms to 
share genomic raw data, including Gene 
Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/), ArrayExpress (https://www.
ebi.ac.uk/arrayexpress) and the European 
Nucleotide Archive (https://www.ebi.ac.uk/
ena). In contrast, trained genomics models 
are made available via scattered channels, 
including code repositories, supplementary 
material of articles and author-maintained 
web pages. The lack of a standardized 
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framework for sharing trained models in 
genomics hampers not only the effective 
use of these models—and in particular their 
application to new data—but also the use of 
existing models as building blocks to solve 
more complex tasks.

Repositories of trained models 
(Supplementary Table 1), which are 
routinely used for benchmarking and as 
a starting point to rapidly develop new 
models in computer vision and natural 
language processing, hold the promise 
to overcome these challenges. However, 
although generic model repositories exist, 
these are geared toward a technical audience 
of machine-learning experts. In contrast, a 
repository of trained models for genomics 
needs to be easy to use and deliver robust 
and well-documented software to enable 
application by practitioners who do not 
have expert knowledge in machine learning. 
A second challenge is the heterogeneity of 
machine-learning frameworks that are  
used, including Keras (https://keras.io),  
Tensorflow (https://tensorflow.org), 
PyTorch (https://pytorch.org) and custom 
model code, which is not addressed by 
current repositories. Furthermore, a 
model repository for genomics requires 
additional developments to support data 

formats and necessary processing steps 
for data produced by different genomics 
technologies. Finally, applications in 
genomics impose specific requirements on 
the interpretability of models, for example, 
to understand changes in phenotype for 
different DNA sequence inputs.

Here, we present Kipoi (Greek for 
‘gardens’, pronounced ‘kípi’), an open science 
initiative to foster sharing and reuse of 
trained models in genomics. Already, the 
Kipoi repository (Fig. 1, middle) offers more 
than 2,000 individual trained models from 
22 distinct studies that cover key predictive 
tasks in genomics, including the prediction 
of chromatin accessibility, transcription 
factor binding, and alternative splicing 
from DNA sequence. Kipoi is accessible via 
GitHub and as web resource (https://kipoi.
org), providing a browsable interface to 
explore and search models for specific tasks.

One of the core innovations of Kipoi 
includes standardized data handling (data-
loaders) (Fig. 1, left). Data-loaders abstract 
and unify the preprocessing of data stored 
in bioinformatics file formats, yielding 
numerical representations that can be used 
as model inputs. Kipoi defines an application 
programming interface (API; Fig. 1, right; 
i.e., a standard way for software components 

to communicate with Kipoi models), which 
allows programmers to interchangeably 
use Kipoi models in their software with 
minimal coding effort. The Kipoi API is 
accessible from python and R, two of the 
most popular programing languages in 
computational biology. The API can also 
be accessed via the command line, which 
facilitates the integration of Kipoi models 
into bioinformatics workflows.

To ensure sustainability of trained 
models and to facilitate their dissemination, 
Kipoi builds on and interoperates with a 
range of software development technologies 
and standards. The model descriptions 
and the code of Kipoi are stored in GitHub 
repositories, providing issue tracking 
to facilitate transparent and rapid user–
developer iterations. Moreover, by building 
on GitHub, we track and index both the 
Kipoi core code and contributed models, 
which facilitates reproducible research. 
The Kipoi model definition describes the 
model inputs and outputs, specifies the 
data-loader and required dependencies, 
and provides information about the source 
publication or the distribution license. 
Kipoiseq (https://github.com/kipoi/
kipoiseq/), a companion python package, 
provides ready-to-use data-loaders for 
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Fig. 1 | Overview of Kipoi. From left to right: at its core, Kipoi defines a programmatic standard for data-loaders and predictive models. Data-loaders translate 

genomics data into numeric representations that can be used by machine learning models. Kipoi models can be implemented using a broad range of 

machine-learning frameworks. The Kipoi repository allows users to store and retrieve trained models, together with associated data-loaders. Kipoi models are 

automatically versioned, nightly tested and systematically documented with examples of their use. Kipoi models can be accessed through unified interfaces 

from python, R and the command line. All models and their software dependencies can be installed in a fully automatic manner. Kipoi streamlines the 

application of trained models to make predictions on new data, to score variants stored in the standard variant call format (.vcf) file format, and to assess the 

effect of variation in the input to model predictions (feature importance score). Moreover, Kipoi models can be adapted to new tasks either by retraining them 

or by building new composite models that combine existing ones. Newly defined models can be deposited in the repository.
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canonical sequence-related bioinformatics 
data types. Model parameters or other 
non-source files are hosted on Zenodo or 
Figshare—data repositories that offer a 
digital object identifier (DOI) and ensure 
long-term data access. Kipoi enables 
seamless installation of models and their 
software dependencies independently of the 
programming language of the model (by 
providing containers or using Conda and 
pip package managers, hence leveraging 
the Bioconda distribution13; Supplementary 
Methods). New models can be contributed 
using a simple, well-documented workflow 

(Supplementary Methods). Moreover, all 
models are subjected to nightly tests using 
a continuous integration service (CircleCI), 
thereby ensuring that all models are 
executable and yield reproducible outputs 
on test datasets14. Below, we illustrate usage 
of Kipoi through five relevant use cases and 
make the code available for each of them.

Benchmarking alternative models for 
predicting transcription factor binding
Practitioners are often faced with the 
choice between multiple predictive 
models. Identifying the most appropriate 

model often requires them to perform 
a benchmark on data relevant to the 
application. Access to a wide range of 
models through a common API facilitates 
the systematic comparison of models. To 
illustrate this use case, we benchmarked 
five models for predicting genomic binding 
sites of transcription factors (Fig. 2a). These 
models span different modeling paradigms, 
including methods based on classical 
position weight matrices, gapped k-mer 
support vector machines (lsgkm-SVM15) 
and deep learning (DeepBind6, DeepSEA7 
and FactorNet8). The models were 
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binding based on alternative modeling paradigms: first, position weight matrices provided by the HOCOMOCO database28; second, lsgkm-SVM15, a support 

vector machine classifier; third, the convolutional neural network DeepBind6; fourth, the multi-task convolutional neural network DeepSEA; and finally, 

FactorNet, a multimodal deep neural network with convolutional and recurrent layers that further integrates chromatin accessibility profile and genomic 

annotation features. Models differ by both the size of genomic input sequence (DeepSEA7 and FactorNET8 consider ~1 kb, whereas other models are based on 

~100 bp sequence inputs) and the parametrization complexity, with the total size of stored model parameters ranging from 16 kB (pwm_HOCOMOCO) to 211 

MB (DeepSEA). b, Performance of the models in a for predicting ChIP-seq peaks of four transcription factors on held-out data (chromosome 8), quantified 

using the area under the precision recall curve (auPRC). More complex models yield more accurate predictions than the simpler models such as the commonly 
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assessed for distinguishing bound from 
unbound regions, where bound regions 
were defined as high-confidence binding 
events in chromatin immunoprecipitation 
sequencing (ChIP-seq) experiments for 
four transcription factors in different cell 
lines: CEBPB in HeLa-S3, JUND in HepG2, 
MAFK in K562 and NANOG in H1-hESC 
(Supplementary Methods). With the 
exception of lsgkm-SVM (Supplementary 
Table 1), all Kipoi implementations of 
the considered models are based on 
implementations provided by the respective 
publications and were trained by the 
original authors. The performance of all 
models was assessed on chromosome 8, 
which was not used to train any of the 
considered models.

Position weight matrix models performed 
poorly across all transcription factors 
(Fig. 2b), likely owing to their inability to 

account for additional sequence features, 
such as motifs of other cooperating and 
competing transcription factors. More 
complex models (for example, DeepSEA 
and FactorNet) consistently outperformed 
simpler ones (for example, DeepBind and 
lsgkm-SVM). FactorNet consistently yielded 
the most accurate predictions, most likely 
because the model combines sequence and 
DNA accessibility information (Fig. 2b and 
Supplementary Fig. 1).

In this example, Kipoi greatly simplifies 
an otherwise cumbersome task. The 
considered models are implemented with 
different software frameworks (Fig. 2a), 
require different input file formats, and 
return predictions in different output 
formats. Furthermore, installing and 
validating the appropriate software 
dependencies for each model is difficult and 
time consuming when done manually. With 

Kipoi, the entire procedure of installing 
and executing a model reduces to executing 
three simple commands (Fig. 2c). As these 
three commands are common to all models 
and the predictions are stored in a common 
format, the benchmark can be very simply 
scripted with workflow management tools 
(Supplementary Methods).

Improving predictive models of 
chromatin accessibility via transfer 
learning
Training new models can be time consuming 
and requires large training datasets. One 
way this can be facilitated is via transfer 
learning (i.e., reusing models trained on one 
prediction task to initialize a new model 
for a different but related task)16. Transfer 
learning typically enables more rapid 
training, reduces the required amount of 
data for training and improves the predictive 
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performance compared with models trained 
from scratch. Deep neural networks are well 
suited to transfer learning. They consist of 
successive layers that transform input data 
into increasingly abstract representations. 
Most of the low-level abstractions—for 
instance, edge detection for images or 
transcription factor motifs in genomics—
turn out to be common to multiple 
prediction tasks. Consequently, it is often 
sufficient to train only the more abstract 
layers when transferring such models to 
solve a new task. Transfer learning of deep 
neural networks has been successfully 
applied across multiple domains, including 
biological imaging17, natural language 
processing18 and genomics19.

Here we revisit a transfer learning 
example in genomics19, predicting chromatin 
accessibility profiles for 431 biosamples (cell 
lines or tissues; Supplementary Methods). 

Initially, we trained a genome-wide multi-
task model to predict chromatin accessibility 
for 421 biosamples (tasks), while holding 
out 10 biosamples. For the 10 held-out 
biosamples, we trained single-task models, 
one per biosample, transferring all model 
parameters but the final layer (Fig. 3a).  
The final two layers of this model were 
then retrained for each task while keeping 
the remaining model parameters fixed. For 
comparison, we also considered single-
task models with randomly initialized 
parameters but otherwise identical 
architecture. Models initialized with 
transferred model parameters yielded 
improved predictive accuracy for all 
biosamples, with a 15.1% larger area under 
the precision recall curve on average, 
compared to conventional training using 
randomly initialized parameters (Fig. 3b). 
Transfer learning also greatly reduced the 

required training time, from over a day to 7 
h on average (5.4 epochs versus 17.3 epochs 
on average; Fig. 3c).

Kipoi promotes transfer learning in 
three ways. First, it provides access to a 
comprehensive collection of state-of-the-
art models in genomics. Transfer learning 
works better if the tackled task is similar to 
the original task of the pretrained model16. 
Kipoi allows users to efficiently access a 
large collection of trained models, which 
can be browsed by name, tag or framework, 
thus facilitating the identification of models 
trained for related tasks. Second, each model 
is easily installable and comes with a tested 
data-loader. Most of the data-loaders can 
be directly used to retrain models. Third, 
for neural network models, Kipoi offers a 
command to return and store the activation 
of a desired intermediate layer rather than 
the final, prediction layer. Using these 
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precomputed intermediate activations 
can substantially speed the training of the 
transferred model. A second advantage of 
storing the intermediate activation is that 
any framework can be used to train the top 
layers. Altogether, leveraging pretrained 
models—in particular, deep neural networks 
that have been trained on large datasets 
with a substantial investment in computing 
time—allows researchers to train more 
accurate models on smaller datasets while 
saving time and computing costs.

Predicting the molecular effects of 
genetic variants using interpretation 
plugins
One important application of trained 
models in genomics, with translational 
relevance in human genetics and cancer 
research, is to predict the effects of genetic 
variants on molecular phenotypes7,20. 
Individually, variant effect prediction has 

been implemented by a subset of published 
sequence-based predictive models, such 
as DeepBind6, DeepSEA7 and CpGenie20. 
Kipoi provides a generic and standardized 
implementation of variant effect prediction 
as a plugin, which allows for annotating 
variants obtained from the variant call 
format (.vcf) files in conjunction with 
DNA sequence-based models (98% of 
models in the Kipoi repository). The 
variant effect prediction plugin performs 
in silico mutagenesis by contrasting model 
predictions for the reference allele and for 
the alternative allele (Fig. 4a,b). If the model 
can be applied across the entire genome, 
such as in chromatin accessibility models, 
sequences centered on the queried variants 
are extracted (top row, Fig. 4b). If instead 
the model can only be applied to regions 
anchored at specific genomic locations, 
such as in splicing models at intron–exon 
junctions, only sequences extracted from 

valid regions that overlap with the variants 
of interest are used (bottom row, Fig. 4b). 
Kipoi provides a single command handling 
both scenarios (Fig. 4c). Altogether, the 
variant effect prediction plugin allows 
integrating a broad range of genomics 
predictive models into personal genome 
annotation workflows, and it can be readily 
extended to newly added models.

To inspect genomic regions containing 
the variant in higher detail, variant effect 
predictions for all possible single nucleotide 
variants in the sequence can be computed 
using a single command (Fig. 4d) and 
visualized as a mutation map (Fig. 4e). This 
helps to assess the predicted impact of a 
variant of interest in the context of other 
possible variants in the genomic region and 
may help pinpoint affected cis-regulatory 
elements. For example, the mutation maps 
for transcription factor binding sites of 
GATA2 show that the first four models 
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from Fig. 2 agree on the effect of the variant 
rs35703285. Interestingly, the three most 
complex models (lsgkm-SVM, DeepBind 
and DeepSEA) predict effects of similar 
strength further away from the core motifs. 
This likely reflects that these models capture 
further regulatory sequences beyond the 
core motif. The variant rs35703285 has 
previously been classified as pathogenic 
in the ClinVar dataset and is linked to 
β-thalassemia (MedGen: C0005283), 
a disease that reduces synthesis of the 
hemoglobin subunit β (hemoglobin β chain) 
and results in microcytic, hypochromic 
anemia. The mutation map indicates  
that similar loss of GATA2 binding  
can be expected from other variants in  
the region.

In addition to in silico mutagenesis, 
which only applies to sequences, Kipoi 
provides a plugin that can evaluate the 
influence for any type of input on model 
prediction by implementing feature 
importance algorithms, including saliency 
maps21 and DeepLIFT22. These algorithms 
can offer complementary insights and are 
computationally more efficient than in silico 
mutagenesis.

Predicting pathogenic splice variants 
by combining models
State-of-the-art models performing variant 
effect prediction frequently combine scores 
from multiple models. The advantage is 
twofold. First, combined scores can cover 
multiple biological processes. Second, 
combined scores are more robust because 
they average out conflicting predictions 
of individual models. Combining models 
or scores can be easily done in Kipoi 
by leveraging the standardization and 
modularity of models in combination 
with the variant effect prediction plugin 
introduced above. As a proof of concept, 
we used Kipoi to define a pathogenicity 
score of variants located near splice sites by 
integrating four predictive models covering 
complementary aspects of splicing (Fig. 5a) 
into a single composite model.

Splicing defects are one of the most 
frequent causes of genetic disease. In 
the first step of splicing, the donor site 
is attacked by an intronic adenosine to 
form a branchpoint. In the second step, 
the acceptor site is cleaved and spliced 
(i.e., joined) to the 3′ end of the donor 
site. To cover variants possibly affecting 
splicing through different mechanisms, we 
considered four complementary models 
trained on different types of data. The first 
two models were 5′ and 3′ MaxEntScan, 
which are based on a probabilistic model 
that scores donor and acceptor site regions 
and was trained on splice sites with cDNA 

support9; the third model was HAL, a k-
mer based linear regression model scoring 
donor site regions that was trained on a 
massively parallel reporter assay in which 
hundreds of thousands of random sequences 
probed the donor site sequence space10; 
and the fourth model was LaBranchoR, a 
deep-learning model scoring the region 
upstream of the acceptor site for possible 
branchpoint locations that was trained from 
experimentally mapped branchpoints11,23.

Although MaxEntScan can be easily 
applied to score genetic variants provided in 
VCF files through Ensembl’s variant effect 
predictor plugin24, HAL and LaBranchoR 
do not offer this functionality out of the 
box. Using Kipoi’s API, the variant effect 
prediction is standardized for all these 
models (Fig. 5a). We built a new Kipoi 
model, KipoiSplice4, which is a logistic 
regression model based on variant effect 
predictions of these four Kipoi models 
and phylogenetic conservation scores 
(Supplementary Methods and Fig. 5a). 
This combined model was trained on two 
different datasets of splice variants classified 
either as pathogenic or benign (dbscSNV 
and ClinVar; Supplementary Methods).

To illustrate the benefit of integrating 
multiple models, we incrementally 
added the four splicing models in the 
chronological order of model publication. 
With an increasing number of models, the 
performance increased in both dbscSNV 
and ClinVar datasets (Fig. 5b, left four 
methods). Next we evaluated the model 
performance against two state-of-the-art 
splicing scores: another integrative approach 
that predicts pathogenic splicing-affecting 
variants, dbscSNV25, and SPIDEX26. For a 
fair comparison, we furthermore trained a 
score combining SPIDEX and phylogenetic 
conservation on each dataset, which reached 
the same performance as the dbscSNV 
model on ClinVar. While the performance 
of KipoiSplice4 is similar to that of dbscSNV 
for the dbscSNV dataset, KipoiSplice4 
outperforms all other methods on the 
ClinVar dataset. One reason for the better 
performance of KipoiSplice4 is that it scores 
more variants (Fig. 5c). Neither SPIDEX 
nor dbscSNV explicitly models the splicing 
branchpoint, while KipoiSplice4 does so 
using LaBranchoR.

By wrapping the individual models into 
a data-loader, we made the ensemble model 
KipoiSplice4 available in Kipoi. KipoiSplice4 
can hence be executed on demand to 
de novo predict effects of variants in splice 
sites. Altogether, by wrapping existing 
splice models into Kipoi, and thereby 
leveraging the out-of-the-box variant effect 
prediction, we developed a state-of-the-
art model for scoring the pathogenicity of 

splicing variants. Additionally, with new 
splicing models and more extensive training 
datasets of better quality being published, 
the ensemble model can be easily and 
transparently improved.

A unique resource
We have introduced a repository and 
programmatic standard for sharing and 
reuse of trained models in genomics, thereby 
addressing an unmet need. The Kipoi 
model repository is dedicated to trained 
models with applications in genomics in 
the broad sense. Specifically, we request at 
least one input data modality that can be 
derived either from DNA sequence (which 
includes amino acid sequence) or from an 
-omics assay, such as ChIP-seq or protein 
mass spectrometry. By providing a unified 
interface to models, automated installation, 
and nightly tests, Kipoi streamlines the 
application of trained models, overcomes 
the technical hurdles of their deployment, 
improves their dissemination, and ultimately 
facilitates reproducible research. The use 
cases we have presented demonstrate that 
Kipoi greatly facilitates the execution  
and comparison of alternative models  
for the same task, standardizes their use  
to functionally interpret genetic variants, 
and facilitates the development of new 
models based on existing ones, either by 
means of transfer learning or by model 
combination.

The dissemination and sharing of trained 
models offers key advantages over either 
sharing precomputed predictions or sharing 
code for users to train models from scratch. 
Precomputed predictions are limited to 
a narrow set of predefined input data. In 
particular, for DNA sequence variations, 
the combinatorial growth of possible 
sequence variants renders this approach 
impractical in terms of storage and compute 
requirements. For example, storing variant 
effect predictions is technically impossible 
even for relatively short (<10 bp) indels. 
Conversely, retraining models from scratch 
is technically challenging and requires access 
to potentially large training dataset, as well 
as suitable computational resources. Trained 
machine learning models can be regarded as 
functions encoding data distributions27. We 
anticipate the relevance of sharing trained 
models increasing as larger datasets are 
becoming available, with repositories such as 
Kipoi filling an important gap between code 
repositories and data archives.

Transfer learning appears to be a 
promising avenue for training models 
when data are scarce. Using prediction of 
DNA accessibility as an example, we have 
illustrated the potential of transfer learning 
in a favorable scenario where multiple 
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related datasets and tasks are available. 
The utility of transfer learning depends 
on how similar the new prediction task 
is to those of available models. Although 
the definition of generic measures for task 
similarity is an open research question, 
trial and error is a viable and pragmatic 
strategy to design transfer learning schemes 
because it is computationally cheap 
compared to exploring model architectures 
and parameter settings from scratch. A 
starting point for this search is to use models 
trained for tasks involving related biological 
processes. For example, the available 
models trained on in vitro transcription 
factor binding assays can be good initial 
models to train in vivo models of the same 
transcription factors, or models trained on 
different cell types of tissues. Multi-task 
models are particularly useful because they 
capture multiple biological processes, some 
of which might be relevant for the new task.

At the core of our contribution is an 
API, a unified way for software components 
to interact with any of these models. APIs 
provide modularity to software design and 
help to reduce code redundancy. We have 
demonstrated the utility of the API, which 
provides a generic approach both to carry 
out variant effect predictions and derive 
feature importance scores for a wide range 
of models. These examples are important 
downstream functionalities that are typically 
not provided by software implementations 
of models as provided by authors, or they 
may be implemented using diverse and 
inconsistent paradigms and interfaces. 
We foresee a range of future plugins that 
are of general use for different models. 
Additionally, it is straightforward to set up 
new instances of a Kipoi model repository. 
It could even be adopted in domains other 
than genomics because the Kipoi API is 
agnostic to input or output data types and 
machine learning frameworks.

While complying to a programmatic 
standard can constrain contributors and 
provide some initial overhead to adapting 
legacy software, the long-term community 
benefits from the standardization will 
outweigh short-term investments. The 
open software project Bioconductor 
and the data archive Gene Expression 
Omnibus are canonical examples of the 
expected gains. These frameworks achieve 
a suitable compromise between rigidly 
enforced structure and no structure. With 
this in mind, we have designed Kipoi’s 
API to rigorously specify specific aspects, 
such as providing example files to test 
model executability, while leaving other 
choices, such as the machine learning 
modeling framework, open to developers. 
We anticipate that community usage will 

help to develop good practices and find a 
reasonable balance between standardization 
and flexibility.

An exciting next step would be to set up 
open challenges for key predictive tasks in 
genomics with open challenge platforms, 
like DREAM (http://dreamchallenges.org) 
or CAGI (https://genomeinterpretation.
org), and make the best models available in 
Kipoi. This would simplify and modularize 
the development of predictive models into 
three steps: first, designing training and 
evaluation datasets (challenge organizers); 
second, training the best model (challenge 
competitors); and third, making the model 
easily available for others to use (repository 
of trained models). Such modularization 
would lower the entry barrier for 
newcomers as well as machine learning 
practitioners lacking domain expertise. 
Moreover, as models and training datasets 
continue to evolve, such best-in-class 
models could be continuously updated and 
made immediately available to all. Kipoi 
provides important elements to this end:  
a standardization for data loading and 
model execution, nightly tests, and a 
central repository.

A repository of interoperable models 
opens the possibility of building composite 
models that capture how genetic variation 
propagates through successive biological 
processes. Such a sequential, modular 
modeling offers several advantages. First, 
end-to-end fitting of a complex trait such 
as a cellular behavior or the expression level 
of a gene can be too difficult because the 
amount of data is too scarce compared to the 
complexity of the phenomena. In contrast, 
today’s high-throughput technologies 
focusing on a specific subprocess offer 
more data at higher accuracy. For example, 
massively parallel reporter assays allow 
saturated screens in which almost the 
complete combinatorial sequence space 
can be probed for the selected molecular 
processes. Hence accurate models may 
be obtained for these elementary tasks 
and serve as building blocks for modeling 
more complex tasks. Second, modularity 
is a hallmark of biological processes as 
the same proteins are often involved in 
multiple processes. We therefore anticipate 
fruitful cross-talk between modelers sharing 
individual components useful for different 
modeling tasks. Third, such an approach 
would lead to models that are interpretable 
in terms of simpler biological processes, as 
opposed to black box predictors. Whether 
and how predictive models of elementary 
steps can be sequentially combined and 
jointly fitted to model multiple higher order 
biological processes of increasing complexity 
is an exciting research direction. Altogether, 

we foresee Kipoi being a catalyst in the 
endeavor to model complex phenotypes 
from genotype.

Data availability
All models used in this analysis are available 
at https://doi.org/10.5281/zenodo.1637796. 
The model configuration files in the 
repository link to model parameters stored 
in specific Zenodo digital objects and are 
therefore guaranteed to be reproducible 
and openly available. Chromatin 
accessibility data used for training and 
evaluating Divergent421 in the transfer-
learning section is available at https://
doi.org/10.5281/zenodo.2615128 in the 
manuscript/data/raw/tlearn directory.

Code availability
Kipoi, kipoiseq, kipoi_veff, and kipoi_
interpret are available as python packages 
on PyPI and their source code is available 
at https://github.com/kipoi/kipoi, https://
github.com/kipoi/kipoiseq, https://github.
com/kipoi/kipoi-veff and https://github.
com/kipoi/kipoi-interpret, correspondingly. 
Models are hosted at https://github.com/
kipoi/models. Analysis was performed 
with the following versions: kipoi = 0.6.4, 
kipoiseq = 0.2.2, kipoi_veff = 0.1.0, kipoi_
interpret = 0.1.0, model repository with 
5a93b7b7ae1842c35b0052e2c17afda15 
ec8a890 commit SHA-1 hash. Code to 
reproduce the results is available at https://
github.com/kipoi/manuscript. Code 
and data are also available at https://doi.
org/10.5281/zenodo.2615128.
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